Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation

J. Vorba, J. Krivanek [SIGGRAPH 2016]

Presenter: Eunhyouk Shin

Last presentation: Interactive Sound Propagation with Bidirectional Path Tracing

- Acoustic transport equation
- Solution in Neumann series form
- Estimate terms using BDPT & multiple importance sampling
- Caching for interactive performance
- SNR metric for evaluating stochastic sound propagation
- Compared to visual rendering, temporal dimension quality is important rather than spatial resolution

Recall: Probabilistic Aspects of MCRT

Direction sampling

Russian roulette / splitting

Recall: Importance Sampling

To reduce variance (noise),

we must make more path that contributes more.

But how do we know beforehand how much it will contribute?

Recent Techniques using Global Estimation

Contents

- Particle tracing
- Russian roulette & splitting
- Determining the RR/splitting factor
- Weight window
- Results

*Figures in the slides is from the authors [Vorba et al. 16]

- Trace weighted particles to get an unbiased estimate of the pixel value

Weight Emission + $\nu_{\mathrm{i}}(\mathbf{y}_{k},\omega_{k})\,L_{\mathrm{o}}^{\mathrm{e}}(\mathbf{y}_{k},\omega_{k})$

- When a particle collides to a light source, it contributes to the estimation according to the weight.

- Contribution must be different for before/after a bounce

Weight Update: Bounce

Incremental weight update by BRDF, geometric term, sampling distribution

We have an unbiased estimator, But when do we terminate?

Russian Roulette & Splitting

Russian Roulette

Upon collision, the particle survives with probability q

Weight Update: Russian Roulette

Key: Expected contribution must remain unchanged

$$\hat{
u} = rac{
u_1}{a}$$
 : Weight of survived particle gets 'boosted'

Splitting

Weight Update: Splitting

Key: Expected contribution must remain unchanged

$$\hat{
u} = rac{
u_1}{q}$$
 : Splitted particles share the weight evenly

Unified RR/Splitting

- RR and splitting has same weight update formula: $\hat{
u} = rac{
u_1}{q}$

Split: q > 1

- Make q particles in expectation sense
 - Extends to non-integer splitting

Determining the RR/Splitting factor

Issues

- If q is too low, only a small fraction of the particles reach the light source

Issues

- If q is too high, we are wasting too much resource for particles with low contribution

Issues

- Existing approaches set q according to the local properties (e.g. reflectance) of the surface, but it's still far from optimal

Adjoint Driven Russian Roulette and Splitting

New approach uses global information of radiance

Adjoint Driven Russian Roulette and Splitting

- Set q as expected contribution of outgoing particles
- How to estimate pixel value and reflected radiance?

Path Guiding [Vorba et al. 2014]

- Precomputed cache of estimated radiance distribution

Estimated Radiance

Summary: Determining the RR/splitting Factor

$$q(\mathbf{y},\omega_{
m i})=rac{
u(\mathbf{y},\omega_{
m i})L_{
m o}^{
m r}(\mathbf{y},\omega_{
m i})}{I}$$
 radiance cache

- Want lower variance in rendered image
- Should make more particles for high-contribution paths
- We query the precomputed radiance cache to compute the adjoint-driven RR/splitting factor

Weight Window

Weight Invariance

RR/Splitting factor

$$q(\mathbf{y}, \omega_{i}) = \frac{\nu(\mathbf{y}, \omega_{i}) L_{o}^{r}(\mathbf{y}, \omega_{i})}{I}$$

Weight after RR/split

$$\hat{
u}(\mathbf{y}, \omega_{\mathrm{i}}) = rac{
u(\mathbf{y}, \omega_{\mathrm{i}})}{q(\mathbf{y}, \omega_{\mathrm{i}})} = \boxed{rac{I}{L_{\mathrm{o}}^{\mathrm{r}}(\mathbf{y}, \omega_{\mathrm{i}})}}$$

Desired weight after RR/splitting

$$rac{I}{L_{
m o}^{
m r}({f y},\omega_{
m i})}$$

Weight Invariance

Weight Invariance

Weight Window

More robust by loosening the RR/splitting

ADRRS Summary

Results

Conclusion

- Use precomputed radiance (adjoint) estimation to compute expected path contribution
- Set RR/splitting factor as the expected contribution
- Able to make more particles for high-contribution path
- Reduced variance in rendered image